
Hikmat Farhat CSC 414 Operating Systems

 Memory Management

 Background

 Swapping

 Contiguous Allocation

 Paging

 Segmentation

 Segmentation with Paging

Hikmat Farhat CSC 414 Operating Systems

Background

 Program must be brought into memory and placed
within a process for it to be run.

 Input queue – collection of processes on the disk
that are waiting to be brought into memory to run
the program.

 User programs go through several steps before
being run.

Hikmat Farhat CSC 414 Operating Systems

Binding of Instructions and Data to
Memory

 Compile time: If memory location known a
priori, absolute code can be generated; must
recompile code if starting location changes.

 Load time: Must generate relocatable code if
memory location is not known at compile time.

 Execution time: Binding delayed until run time
if the process can be moved during its
execution from one memory segment to another.
Need hardware support for address maps (e.g.,
base and limit registers).

Address binding of instructions and data to memory addresses can
happen at three different stages.

Hikmat Farhat CSC 414 Operating Systems

Multistep Processing of a User
Program

Hikmat Farhat CSC 414 Operating Systems

Logical vs. Physical Address
Space

 The concept of a logical address space that is
bound to a separate physical address space is
central to proper memory management.

 Logical address – generated by the CPU; also
referred to as virtual address.

 Physical address – address seen by the memory
unit.

Hikmat Farhat CSC 414 Operating Systems

Memory-Management Unit (MMU)

 Hardware device that maps virtual to physical
address.

 In MMU scheme, the value in the relocation
register is added to every address generated by a
user process at the time it is sent to memory.

 The user program deals with logical addresses; it
never sees the real physical addresses.

Hikmat Farhat CSC 414 Operating Systems

Dynamic relocation using a relocation
register

Hikmat Farhat CSC 414 Operating Systems

Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is
never loaded.

 Useful when large amounts of code are needed to
handle infrequently occurring cases.

 No special support from the operating system is
required implemented through program design.

Hikmat Farhat CSC 414 Operating Systems

Dynamic Linking

 Linking postponed until execution time.

 Small piece of code, stub, used to locate the
appropriate memory-resident library routine.

 Stub replaces itself with the address of the routine,
and executes the routine.

 Operating system needed to check if routine is in
processes’ memory address.

 Dynamic linking is particularly useful for libraries.

Hikmat Farhat CSC 414 Operating Systems

Swapping

 A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

 Backing store – fast disk large enough to accommodate copies of all
memory images for all users; must provide direct access to these
memory images.

 Roll out, roll in – swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority
process can be loaded and executed.

 Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped.

 Modified versions of swapping are found on many systems, i.e., UNIX,
Linux, and Windows.

Hikmat Farhat CSC 414 Operating Systems

Schematic View of Swapping

Hikmat Farhat CSC 414 Operating Systems

Contiguous Allocation

 Main memory usually into two partitions:
 Resident operating system, usually held in low memory with

interrupt vector.

 User processes then held in high memory.

 Single-partition allocation
 Relocation-register scheme used to protect user processes from

each other, and from changing operating-system code and data.

 Relocation register contains value of smallest physical address;
limit register contains range of logical addresses – each logical
address must be less than the limit register.

Hikmat Farhat CSC 414 Operating Systems

Hardware Support for Relocation and Limit
Registers

Hikmat Farhat CSC 414 Operating Systems

Paging

 The physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is available.

 Divide physical memory into fixed-sized blocks called frames (size is
power of 2, between 512 bytes and 8192 bytes).

 Divide logical memory into blocks of same size called pages.

 Keep track of all free frames.

 To run a program of size n pages, need to find n free frames and load
program .

 Actually not all the pages need to allocated frames at the same time
therefore logical memory can be much bigger than physical memory.

 Set up a page table to translate logical to physical addresses.

Hikmat Farhat CSC 414 Operating Systems

Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table

which contains base address of each page in physical
memory.

 Page offset (d) – combined with base address to define
the physical memory address that is sent to the
memory unit.

Hikmat Farhat CSC 414 Operating Systems

Address Translation Architecture

Hikmat Farhat CSC 414 Operating Systems

Paging Example

Hikmat Farhat CSC 414 Operating Systems

Paging Example

Hikmat Farhat CSC 414 Operating Systems

Free Frames

Before allocation After allocation

Hikmat Farhat CSC 414 Operating Systems

Implementation of Page Table

 Page table is kept in main memory.

 Page-table base register (PTBR) points to the page table.

 Page-table length register (PRLR) indicates size of the
page table.

 In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

 The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

Hikmat Farhat CSC 414 Operating Systems

Associative Memory

 Associative memory – parallel search

Address translation (A´, A´´)
 If A´ is in associative register, get frame # out.

 Otherwise get frame # from page table in memory

Page # Frame #

Hikmat Farhat CSC 414 Operating Systems

Paging Hardware With TLB

Hikmat Farhat CSC 414 Operating Systems

Memory Protection

 Memory protection implemented by associating
protection bit with each frame.

 Valid-invalid bit attached to each entry in the page
table:
 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal
page.

 “invalid” indicates that the page is not in the process’
logical address space.

Hikmat Farhat CSC 414 Operating Systems

Valid (v) or Invalid (i) Bit In A Page
Table

Hikmat Farhat CSC 414 Operating Systems

Page Table Structure

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Hikmat Farhat CSC 414 Operating Systems

Hierarchical Page Tables

 With 32-bit addresses and a 4KB pages we need
220 page entries. If each entry is 4 bytes we will
need 4MB for the page table storage per process!

 To deal with this problem we break up the logical
address space into multiple page tables.

 A simple technique is a two-level page table.

 The top level page table contains 1024 entries. If
each entry is 4 bytes we need 4KB per process
which is quite reasonable.

Hikmat Farhat CSC 414 Operating Systems

Two-Level Paging Example
 A logical address (on 32-bit machine with 4K page size) is

divided into:
 a page number consisting of 20 bits.
 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further
divided into:
 a 10-bit page number.
 a 10-bit page offset.

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is
the displacement within the page of the outer page table.

page number page offset

pi p2 d

10 10 12

Hikmat Farhat CSC 414 Operating Systems

Two-Level Page-Table Scheme

Hikmat Farhat CSC 414 Operating Systems

Address-Translation Scheme

 Address-translation scheme for a two-level 32-bit
paging architecture

Hikmat Farhat CSC 414 Operating Systems

Example

 Consider a two-level page structure. A given
process needs 4MB for text, 4MB for data and
4MB for stack.

 The system allocates 1024 entries in the top-level
table with only three entries have the valid bit set.

 For each of the valid entries we need to allocate a
second-level table with 1024 entries.

 The total storage needed would be

 4KB for top level and 12KB for second-level=16KB

Hikmat Farhat CSC 414 Operating Systems

 Suppose that the OS allocates physical memory
as follows
 4MB of text allocated between 0x00400000 and

0x00800000. (4MB and 8 MB)

 4MB of data allocated between 0x01400000 and
0x01800000 (20MB and 24MB)

 4MB of stack allocated between 0x02800000 and
0x02c00000 (40MB and 44MB)

 We need three page tables and thus three entries
in the page directory.

Hikmat Farhat CSC 414 Operating Systems

 Assume that the virtual address space for the
process is 12MB starting from 0.

 Therefore the first 4MB should map to
0x00400000-0x00800000

 The second 4MB should map to 0x01400000-
0x01800000

 The third 4MB should map to 0x02800000-
0x02c00000

Hikmat Farhat CSC 414 Operating Systems

Constructing the page tables

 The first page table correspond to the first
mapping.

0x00400000

0x00402000

…

0x007FF000

0x00400000

0x00400FFF
0x00401000

0x00401000

First Page Table

Physical Memory

0x007FF000

0x007FFFFF

…

Hikmat Farhat CSC 414 Operating Systems

 The second page table correspond to the second
mapping.

0x01400000

0x01402000

…

0x017FF000

0x01400000

0x01400FFF
0x01401000

0x01401000

Second Page Table Physical Memory
…

0x017FF000

0x017FFFFF

Hikmat Farhat CSC 414 Operating Systems

 The third page table correspond to the third
mapping

0x02800000

0x02802000

…

0x02bFF000

0x02800000

0x02800FFF
0x02801000

0x02801000

Third Page Table
Physical Memory…

0x02bFF000

0x02bFFFFF

Hikmat Farhat CSC 414 Operating Systems

Storing the tables

 Assume that the OS stores the tables starting at
physical address 0.

 The first entry of the directory is at 0, the second
is at 4…

 Since the directory takes 4KB, the first table starts
at 4KB, the second at 8KB and the third at 12KB.

 Therefore the three entries in the directory are as
follows

Hikmat Farhat CSC 414 Operating Systems

Page Directory

0x00001000
0x00002000
0x00003000

…

0
4
8

4092

Memory
address

Index

0
1
2

1023

Hikmat Farhat CSC 414 Operating Systems

 Consider an access to virtual address a=0x00003004.
(code area)

 The corresponding directory entry is a>>22=0 (the first
page table)

 So the MMU retrieves the entry at 0 offset from page
directory which contains 0x00001000

 The page table offset is (a>>12)&3FF=3 which is the entry
offset at page table located at 0x00001000. That entry
yields 0x00403000. Therefore the address is located in the
page frame starting at address 0x00403000.

 The address offset=a&FFF=4 and finally the physical
address is 0x00403004

Hikmat Farhat CSC 414 Operating Systems

 Consider the virtual address a=0x00b34567 (stack area).
 The page directory entry is a>>22=0x2. The entry whose

index is 2 contains 0x00003000 which points to the third
page table.

 The page table offset is
(a>>12)&0x3ff=0x334=820(decimal)

 The page entry is the 820th entry in the third page table.
 In this example the pages are contiguous thus the address

stored at the 820th entry is
0x02800000+0x334*0x1000=0x02b34000. This is the
address of the corresponding page frame.

 Finally the physical address is
0x02b34000+0x567=0x02b34e567

Hikmat Farhat CSC 414 Operating Systems

Example2

 Usually the stack area is allocated towards the
end of the virtual address space.

 Assume that the 4MB of stack are allocated in the
range 0xbfc00000-0xc0000000

 Therefore we need the following mapping

[0x02800000-0x02c00000)[0xbfc00000-0xc0000000)

[0x01400000-0x01800000)[0x00400000-0x00800000)

[0x00400000-0x00800000)[0-0x00400000)

PhysicalVirtual

Hikmat Farhat CSC 414 Operating Systems

 Setup the directory table and all necessary page
tables.

 Assume that the directory table starts at 0
physical address and the page tables are stored
after the directory table.

Hikmat Farhat CSC 414 Operating Systems

Example 3

 Assume that the page directory is stored at 0x00100000
and all subsequent page tables are stored after it.

 Build the necessary page tables and directory entries.

[0xbfc00000-0xc0000000)

[0x00400000-0x00800000)

[0-0x00400000)

Virtual

[0x02800000-0x02c00000)

[0x01400000-0x01800000)

[0x00400000-0x00600000)

And

[0x01000000-0x01200000)

Physical

Hikmat Farhat CSC 414 Operating Systems

Shared Pages

 Shared code
 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window
systems).

 Private code and data
 Each process keeps a separate copy of the code and

data.

 The pages for the private code and data can appear
anywhere in the logical address space.

Hikmat Farhat CSC 414 Operating Systems

Segmentation

 Memory-management scheme that supports user view of
memory.

 A program is a collection of segments. A segment is a
logical unit such as:

main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

Hikmat Farhat CSC 414 Operating Systems

User’s View of a Program

Hikmat Farhat CSC 414 Operating Systems

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Hikmat Farhat CSC 414 Operating Systems

Segmentation Architecture

 Logical address consists of a two tuple:
<segment-number, offset>,

 Segment table – maps two-dimensional physical
addresses; each table entry has:
 base – contains the starting physical address where the segments

reside in memory.
 limit – specifies the length of the segment.

 Segment-table base register (STBR) points to the segment
table’s location in memory.

 Segment-table length register (STLR) indicates number of
segments used by a program;
 segment number s is legal if s < STLR.

Hikmat Farhat CSC 414 Operating Systems

Segmentation

 Protection. With each entry in segment table
associate:
 validation bit = 0 ⇒ illegal segment
ν read/write/execute privileges

 Protection bits associated with segments; code
sharing occurs at segment level.

 Since segments vary in length, memory allocation
is a dynamic storage-allocation problem.

 A segmentation example is shown in the following
diagram

Hikmat Farhat CSC 414 Operating Systems

Segmentation Hardware

Hikmat Farhat CSC 414 Operating Systems

Example of Segmentation

Hikmat Farhat CSC 414 Operating Systems

Intel x86

 As shown in the following diagram, the Intel 386
uses segmentation with paging for memory
management with a two-level paging scheme.

Hikmat Farhat CSC 414 Operating Systems

Intel x86 Address Translation

Hikmat Farhat CSC 414 Operating Systems

X86 Page Tables
Page Directory Entry

31 12 012

Page Table Entry
31 12 012

Page Table Base Addr

Page Base Address

6

0-Present
1-Read/Write
2-User/Supervisor

0-Present
1-Read/Write
2-User/Supervisor
6-Dirty

Hikmat Farhat CSC 414 Operating Systems

How to Fetch Table Entries

 Given a page directory entry that contains a page
table base address x how do we fetch the page
table entry?

 For example if x is the base address of the table
and we need to fetch entry at offset 2, then the
entry’s address is at x+8

 int *entry_p=x+8;

 The problem is that x is a physical address and the
above code does not work

Hikmat Farhat CSC 414 Operating Systems

Linux Memory Layout

 Linux allocates 4GB of virtual address space for
each process.

 The first 3GB are for user and the fourth is for the
kernel.

3GB 1GB

Mapping Per Process Same Mapping
For all processes

PAGE_OFFSET

PAGE_OFFSET=0xc0000000

Hikmat Farhat CSC 414 Operating Systems

Retrieving Page Entries

We know that

1. All paging data structures are stored in kernel
space.

2. Kernel space mapping is fixed
 physical address=virtual address-PAGE_OFFSET

